GDP Nowcasting Performance of Traditional Econometric Models vs Machine-Learning Algorithms: Simulation and Case Studies

GDP Nowcasting Performance of Traditional Econometric Models vs Machine-Learning Algorithms: Simulation and Case Studies
READ MORE...
Volume/Issue: Volume 2025 Issue 252
Publication date: December 2025
ISBN: 9798229033626
$20.00
Add to Cart by clicking price of the language and format you'd like to purchase
Available Languages and Formats
English
Prices in red indicate formats that are not yet available but are forthcoming.
Topics covered in this book

This title contains information about the following subjects. Click on a subject if you would like to see other titles with the same subjects.

Nowcasting , Machine Learning , Forecast evaluation , Real-time data

Summary

Are Machine Learning (ML) algorithms superior to traditional econometric models for GDP nowcasting in a time series setting? Based on our evaluation of all models from both classes ever used in nowcasting across simulation and six country cases, traditional econometric models tend to outperform ML algorithms. Among the ML algorithms, linear ML algorithm – Lasso and Elastic Net – perform best in nowcasting, even surpassing traditional econometric models in cases of long GDP data and rich high-frequency indicators. Among the traditional econometric models, the Bridge and Dynamic Factor deliver the strongest empirical results, while Three-Pass Regression Filter performs well in our simulation. Due to the relatively short length of GDP series, complex and non-linear ML algorithms are prone to overfitting, which compromises their out-of-sample performance.